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Abstract. The energy localisation in the case of spherical symmetry advanced previously is 
justified in reference to an exact interior solution which is a generalisation of the p = 
constant Schwarzschild solution. This reveals the inadequacy of the Tolman expression for 
localisation which also fails to provide the correct total mass for a system which exhibits 
certain discontinuities. A generalised localisation expression for arbitrary static systems is 
proposed for further consideration. 

1. Introduction 

The energy concept is central to physics and it is entirely natural that great efforts have 
been devoted through the years to examining its localisability (see, for example, Mprller 
1961, 1965). There is an understandable reluctance to resign oneself calmly to the 
generally prevalent idea that energy is globally conserved but that, in certain areas, one 
is not allowed to inquire about the routes of energy transport in dynamic situations nor, 
indeed, about its actual localisation in quiescent states. To resist this is in keeping with 
intuitive notions. Unless one can successfully elevate uncertainty to the level of a 
principle, as in quantum mechanics, it is best to strive first for certainty. Even if this 
should, in the end, prove unsuccessful, it would still be a positive step in emphasising the 
limitations of the concept. 

Routes of gravitational energy transport have been considered on the Newtonian 
and relativistic levels (Bondi 1965, Cooperstock and Booth 1971, Synge 1972). 
Unfortunately, in spite of some interestingly suggestive expressions, there is a lack of 
uniqueness and one would be hard pressed to choose a preferred gravitational Poynting 
vector. In general relativity, integrated energy flux can be computed using one or other 
energy-momentum pseudotensor and the total mass loss confirmed in certain cases with 
the Bondi news function. However, the detailed transport is unknown. 

The related and probably more basic question regarding the actual localisation of 
gravitational energy in static (and possibly also quasistatic) situations was considered by 
the authors and some preliminary observations were made (Cooperstock and Sarracino 
1978). In this paper, we consider more fully the issues which have been raised and 
conclude that there are very sound arguments to support a particular localisation of 
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energy for the case of spherical symmetry. This is reinforced by the analysis of an exact 
interior solution of the Einstein field equations which is a generalisation of the 
Schwarzschild (1 9 16) interior solution p = constant. The particular localisation 
assumption leads to a mass of the central core which is entirely consistent with that 
which would naturally be ascribed to it from the consideration of geodesics. Tolman 
(1930, 1962) found an expression for the mass of a static or quasistatic system which 
involves an integral over the stress-energy tensor and various authors have employed 
this to deduce the mass of a portion of the distribution, i.e. localisation of energy. 
However, we find that this expression, which we (Cooperstock and Sarracino 1978) had 
shown earlier to disagree with our preferred localisation, leads to an unacceptable 
measure of mass for the central core in the exact solution. Indeed, the Tolman 
expression fails to provide the correct total mass of the system as a whole? an 
unexpected result which is understood and rectified after a consideration of the role of 
the Gauss theorem in the derivation of the Tolman expression. 

With spherical symmetry understood, we advance a proposal for more general static 
configurations to the effect that gravitational energy is most logically localised in regions 
of non-vanishing non-gravitational energy density. This is a straightforward resolution 
to the hitherto ambiguous situation regarding the localisation of gravitational field 
energy in vacuum: the energy is not there at all but rather tied to its source, matter. 
When a system becomes dynamic (with non-sphericity), this tie is broken and the 
gravitational energy leaves the source. Whether or not this process can in turn be 
localised is the object of future study. 

2. Electromagnetic and gravitational energy 

As a preliminary to the consideration of gravitational energy, it is helpful to consider the 
more tractable electromagnetic energy. Although one can concoct a variety of pairs of 
Poynting vectors and electromagnetic energy densities which satisfy a differential 
conservation law, the simplest and preferred pair is 

S = ( c / 4 n )  E x H p E M =  (E2+H2) /8n .  (2.1) 

It has been suggested that the gravitational attraction of the assumed localisation would 
be a test of its validity (Feynmann er a1 1964). At this point, it is worth indicating that 
such a test is readily constructed. Consider the Reissner-Nordstrom metric which 
describes the gravitational field of a spherically symmetric charge q with total mass m : 

2m q2) ( 2m q2)-l 
ds = 1 - - + ~  dt - l--+-, dr2-r2df12. 

2 (  r r r r  (2.2) 

This metric is derived under the assumption that electromagnetic energy is distributed 
through space with non-vanishing energy-momentum tensor component T: = pEM of 
equation (2.1). Thus, a test of the geodesics for a spherically symmetric charge source 
constitutes a test of the assumed localisation according to whether or not they conform 
to the Reissner-Nordstrom metric. 

It is interesting to note that the goo component of the RN metric can be written as 

2 
1 -; (m -q2/2r) 
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and hence one can regard the effective mass which is perceived by a test particle at r as 
m -q2/2r. The test particle senses the entire mass m as r + W .  For finite r, there is a 
shell of energy 

(2.3) 

which is exterior (i.e. at larger r) to the test particle and hence does not drive its motion. 
It is also noteworthy that the integral in equation (2.3) which yields the mass deficit 
q2/2r  is over coordinate volume, not proper volume. If it were taken over proper 
volume, it would be a measure of the electromagnetic energy in the shell. As it is, the 
integral measures total energy in the shell, including the gravitational contribution. This 
result is in line with the energy localisation expression which is discussed in the next 
section. 

3. Avenue towards energy localisation 

In earlier work, it was proposed that for a spherically symmetric system, the total energy 
up to radius r should be regarded as being localised as 

m(r) = 471. Jor T;rr2 dr’ (3.1) 

in Schwarzschild coordinates. This was suggested by the fact that for a body whose 
energy-momentum tensor T; extends to radius a ,  the total energy m is 

.a  

m = 471. J T;rf2 dr’ 
0 

(3.2) 

There are at least three different attitudes which could be assumed with regard to 
localisation. The first is that while gravitational energy certainly contributes to the total 
mass of a system, its location is completely ambiguous, as exemplified by the ambigui- 
ties in the possible choices of energy-momentum pseudotensor for the gravitational 
field. This is probably the majority attitude among relativists who invoke the principle 
of equivalence as support. However, the essential ingredient of this support is 
unworthy of the title ‘principle’ according to Synge (1960), who suggests that it now be 
‘buried with appropriate honours’. Nevertheless, the attitude prevails and is expoun- 
ded with vehemence by Misner eta1 (1973) who, curiously, couple it with the somewhat 
contradictory view that for spherically symmetric situations, energy is indeed localised 
according to equation (3.1). We refer to this amalgam as the second attitude which they 
justify primarily ‘by the circumstance that transfer of energy (with this definition of m) is 
detectable by local measurements’ and its exclusiveness to spherical symmetry 
rationalised because of the absence of spherical gravitational waves. Support for the 
localisation derives from the fact that 

m = -471.r2P drldt, (3.3) 

but is overstated because, while 4 w 2  is the proper area of the surface at radius r, drldt  is 
not the proper velocity in the direction of the pressure forces. Hence, this statement is 
not what one might expect from an extension of the work-energy relationship to the 
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realm of general relativity. However, it is a bona fide justification of the localisation in 
the weak-field limit and the form is certainly very suggestive. 

The dichotomous approach toward localisation might appear somewhat illogical. If 
one were to grant the viability of the concept for spherical symmetry, it would at the 
very least appear premature to dismiss it for other cases merely because of the limitation 
of present knowledge with regard to the localisation of energy in gravitational radiation. 

The third attitude which we will adopt is the following. If a global concept is 
meaningful and useful, these properties are enhanced if the concept can be carried over 
to the local level. The localisation of total energy including the gravitational contribu- 
tion can be successfully formulated in the spherically symmetric case. Instead of 
asserting that this clearly defined localisation suddenly dissolves when one deviates 
from spherical symmetry, we attempt to extend it. In spherical symmetry, the localisa- 
tion is tied to the T: distribution according to equation (3.1). Perhaps this is also the 
case for all static distributions. When one attempts to distribute gravitational energy in 
the field, one encounters ambiguities which have influenced others to reject the concept 
entirely. By tying the energy to the T: distribution, one removes these ambiguities. 
However, a problem which remains is that of describing the routes by which energy 
leaves the T: distribution when a system becomes dynamic. If and when the localisa- 
tion problem for static systems is thoroughly understood, this would be the next 
challenge. 

In going beyond spherical symmetry, an obvious candidate for localisation which 
comes to mind was provided by Tolman (1930, 1962), who showed that for static or 
quasistatic systems with asymptotic Minkowskian boundary conditions, the total mass 
can be expressed as 

m T = J  (T:-T:-Ti-T:)J<dV (3.4) 

where an integral over all space with the pseudotensor and Gauss’ theorem has been 
used. A more direct derivation provided by Landau and Lifshitz (1975) bypasses the 
pseudotensor and derives from R:: 

The Tolman expression of equation (3.4) is then found by relating R: to the diagonal 
components of T: via the field equations and the asymptotic field is used to evaluate the 
surface integral. 

According to Tolman, the final expression in equation (3.4) has the ‘great advantage 
that it can be evaluated by integrating only over the region actually occupied by matter 
or electromagnetic energy since the values of T: will be zero in empty space.’ Thus, for 
Tolman, the formula is apparently a convenient computational device for the evalua- 
tion of the total energy with no commitment to its localisation. However, through the 
years, various authors have used the formula to deduce energy for part of a system and 
have clearly misused it by applying it to systems of infinite extent, in violation of the 
asymptotic Minkowski constraint. We will demonstrate that not only is the localisation 
via the Tolman formula invalid, but also, more surprisingly, it does not always yield the 
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correct total mass, even when the Tolman constraints are satisfied. This, and some of the 
other points which have been made, are developed by reference to an exact solution 
which is now considered. 

4. Generalised interior Schwarzschild solution 

A modification of the T: = constant spherically symmetric solution found by Schwarz- 
schild (1916) is readily found. This consists of an interior p = po core (region I) of radius 
ro followed by a vacuum region I1 of outer radius r l ,  which is surrounded by a p = p1 
shell (region 111) of outer radius a. The outer vacuum region is labelled IV and po and p 1  
are both constants (see figure 1). The integration of the field equations 

- 8 r p  =e-*($-T)-- 1 A '  1 
r2 

where goo = e', g l l  = -eh is facilitated if the densities and coordinate radii satisfy the 
condition 

(4.2) 3 3 
pore = p 1 r l .  

Vacuum 11' 

Figure 1. Generalised interior Schwarzschild model. 

The solution in its entirety for the case of P > 0 is then 
I: e - A  = l - ! . n p o r  2 e' = $,4(3B 
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p = o  P=O; 

e -A = 1 - 3 r p l r  8 2  e” ~ $(3E - e-A/2)2 

IV: 
2m 

r 
e-A = e” = 1 _ _  

p = o  P=O; 

where 

(4.3) 

(4.4) 

Let us assume that the Tolman formula of equation (3.4) correctly localises the 
mass. Then the mass which is localised in the interior core I is easily found using 
equation (3.5) and integrating over a spherical surface in 11. The result is 

~ T ( I )  = JAmo.  (4.5) 

From equation (4.4), we note that this mass is dependent, through A,  on the parameters 
of the exterior shell 111. However, a study of the geodesic equations shows that a test 
particle in TI is driven by mo and is completely uninfluenced by the spherically 
symmetric distribution which is exterior. This is the well known result of Newtonian 
theory which is also valid in general relativity. It is reasonable, then, to ascribe a mass 
mo to the core I and this is precisely what the localisation formula of equation (3.1) does. 
The Tolman formula fails here as it did in other cases studied earlier (Cooperstock and 
Sarracino 1978). 

Let us now use the Tolman formula to compute the total mass of the system. Since 
all of the conditions demanded by Tolman are satisfied, it would be expected to render 
the correct answer. A direct calculation gives 

(4.6) 

However, the total mass is unambiguously deduced from the asymptotic metric and, 
according to its form in equation (4.3), this is m. Moreover, from equations (4.2) and 

- 3  3 3  mT = $rpoJAro  +.rpl(a - T I ) .  

(4.4) 
(4.7) 4 3 m = j r p l a  

and hence mT # m unless A = 1, which implies the absence of the shell. 
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The discrepancy is resolved by noting that the Tolman expression, like many other 
formulae in physics, is derived with the aid of the Gauss theorem. A proper use of the 
theorem depends upon the careful examination of the continuity of relevant functions. 
Clearly, from equation (3.5), mT will not express the total mass if there are 
discontinuities in J-ggoir;,. If such discontinuities exist, the total mass can still be 
found, but the total volume must be broken into regions of continuity and the Gauss 
theorem applied in each. This results in additional contributions to the mass which are 
given by the discontinuities in J-ggoir;, over such surfaces. The particular solution 
given by equations (4.3) affords an excellent physically clear example. 

For this spherically symmetric case, 

riI = r:c = o 
and hence the metric must be examined for discontinuities of 

JrggOlrA, = 4 r 2 v ~  e ( y - A ) / 2  (4.8) 

Now the shell (region 111) is under pressure to maintain equilibrium and since the 
immediate inner region IT is vacuum, there must be a sphere of support at r = rl to 
prevent collapse. Since T f  vanishes identically in 11, the stress is zero for r -+ (TI)- and 
different from zero for r + (rl)+. Thus, there is a discontinuity in P at r = r l  and from the 
second of equations (4.1) and the continuity of the metric itself, V I  must be dis- 
continuous at r = r l .  This is readily verified from equations (4.3), which give the 
following value for the discontinuity of the function in equation (4.8): 

- 
(4.9) ( t r 2 v f  e ( u - A ) / 2  ),=,., = $ r p l r i ( l  - J A ) .  

When this is added to the Tolman expression, equation (4.6), and the condition of 
equation (4.2) is used, the correct total mass $ ~ p ~ a ~  results. The caution which is 
required in the use of the Gauss theorem has been referred to previously (Cooperstock 
and Hobill 1979). It is particularly satisfying to find such a clear-cut example. 

While it is true that ‘admissible’ coordinate systems can be found in which the metric 
and its first derivatives are continuous, it is not necessarily a simple task and it is very 
often more convenient to work with other coordinate systems such as Schwarzschild 
coordinates in the example. As was pointed out by Schild (1967), A is discontinuous in 
the matter-.vacuum interface for the p = constant Schwarzschild solution but the 
present coordinates are conveniently used. The discontinuity in A ‘ also occurs in the 
present case in the I-11,II-I11 and 111-IV interfaces, but from equation (4.8), this does 
not affect the mass calculation, 

at r = 0 if ro = (2mo),  and hence the radius of 
the inner core cannot attain this value while maintaining the static configuration. In the 
present model, there is an additional constraint which arises in that P -+ CO at r = r l  for 

As in the Schwarzschild model, P + 

9 =I--- 2m0 ( *:) r l  * 

This provides the general relativistic limit to the loading of the outer shell. 
From the localisation expression of equation (3.1), one might conclude that the 

stresses do not contribute to the mass and hence the Tolman expression, which involves 
the stresses explicitly, is preferred. However, this would not be justified. Consider, for 
example, the p = po = constant static Schwarzschild sphere and a dust sphere with the 
same constant density and radius. They both have the same mass (Weinberg 1972). 
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The static sphere necessarily has stresses for support but the dust, by definition, is 
stress-free. The explanation is that although each has the same p distribution, it is 
differently constituted in each case. The net p function derives from rest mass, thermal 
energy and interaction energy, the last of which is the avenue by means of which the 
stresses contribute to p and hence to mass in the case of the static body. 

5. Summary and a suggested generalisation 

We have seen that there are a variety of reasons for accepting equation (3.1) as a 
reasonable expression for the localisation of energy in spherically symmetric matter 
distributions. While the Tolman expression of equation (3.4) appears attractive at first 
sight because it is not confined to spherical symmetry and because the density which it 
implies is a three-scalar (Mprller 1952), it is inadequate. The expression does not 
localise in the manner of equation (3.1) when particularised to spherical symmetry and 
for the particular solution studied, it implied a mass for the inner core which is a function 
of the parameters of the outer shell, a physically unacceptable situation. Moreover, it 
was shown that the expression does not even necessarily yield the correct total mass 
when integrated over an entire body because its derivation employs Gauss’ theorem 
which requires special care in the event that surface discontinuities exist. The exact 
solution chosen was precisely of this genre and the surface contributions in conjunction 
with the Tolman expression led to the correct total mass. These results underline the 
impropriety of using the Tolman expression, as one finds periodically in the literature, 
to deduce the partial mass of a system (and doubly so for an unbounded system which is 
clearly outside the scope of the derivation for the expression). The results also raise a 
new restriction on the applicability of the Tolman expression for deducing the total 
mass of a system. 

A generalisation of the localisation for other static systems is now suggested. For 
any given static system, find a system of coordinates for which the total mass can be 
expressed as 

where 3gF is the determinant of the three-space metric in the limit G + 0, i.e. the flat 
three-space metric base of the actual curved three-space. The total mass is known 
either from the asymptotic metric or from the Tolman expression (with due respect to its 
limitations). It is now suggested that the expression should serve as a measure of the 
localisation of the energy as well. It certainly works in the case of spherical symmetry 
from which it is, indeed, directly modelled. It generalises the property from the 
spherically symmetric case that although Tg isnot  the complete energy density (the 
gravitational contribution is not included) and J3gF d3x is not the true volume element, 
the juxtaposition of the two in appropriate coordinate systems does account for the 
gravitational contribution. Assuming that this is the correct embodiment of the role of 
gravitation with regard to energy, the next challenge would be that of understanding 
how one finds the correct coordinates. In the case of spherical symmetry, the Schwarz- 
schild coordinates are particularly suitable. Is it because the constant t, r two-surfaces 
are Euclidean in Schwarzschild coordinates? Beyond this lies the challenge of time- 
dependent systems. 
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